NAPA (gene)
N-ethylmaleimide-sensitive factor attachment protein, alpha, also known as NAPA or alpha-SNAP,[1] is a human gene.[2]
It is abnormally expressed in fetuses of both IVF and ICSI, which may contribute to the increase risk of birth defects in these ART.[3]
The 'SNARE hypothesis' is a model explaining the process of docking and fusion of vesicles to their target membranes. According to this model, membrane proteins from the vesicle (v-SNAREs) and proteins from the target membrane (t-SNAREs) govern the specificity of vesicle targeting and docking through mutual recognition. Once the 2 classes of SNAREs bind to each other, they form a complex that recruits the general elements of the fusion apparatus, namely NSF (N-ethylmaleimide-sensitive factor) and SNAPs (soluble NSF-attachment proteins), to the site of membrane fusion, thereby forming the 20S fusion complex. Alpha- and gamma-SNAP are found in a wide range of tissues and act synergistically in intra-Golgi transport. The sequence of the predicted 295-amino acid human protein encoded by NAPA shares 37%, 60%, and 67% identity with the sequences of yeast, Drosophila, and squid alpha-SNAP, respectively. Platelets contain some of the same proteins, including NSF, p115/TAP, alpha-SNAP, gamma-SNAP, and the t-SNAREs syntaxin-2 and syntaxin-4, that are used in many vesicular transport processes in other cell types. Platelet exocytosis uses a molecular mechanism similar to that used by other secretory cells, such as neurons, although the proteins used by the platelet and their modes of regulation may be quite different.[2]
Interactions
NAPA (gene) has been shown to interact with STX4,[4] SNAP23,[4] STX1A,[5][6] N-ethylmaleimide sensitive fusion protein[6][7] and STX5.[4][8]
References
- ^ NAPA N-ethylmaleimide-sensitive factor attachment protein, alpha
- ^ a b "Entrez Gene: NAPA N-ethylmaleimide-sensitive factor attachment protein, alpha". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8775.
- ^ Zhang Y, Zhang YL, Feng C et al. (September 2008). "Comparative proteomic analysis of human placenta derived from assisted reproductive technology". Proteomics 8 (20): 4344–56. doi:10.1002/pmic.200800294. PMID 18792929.
- ^ a b c Rual, Jean-François; Venkatesan Kavitha, Hao Tong, Hirozane-Kishikawa Tomoko, Dricot Amélie, Li Ning, Berriz Gabriel F, Gibbons Francis D, Dreze Matija, Ayivi-Guedehoussou Nono, Klitgord Niels, Simon Christophe, Boxem Mike, Milstein Stuart, Rosenberg Jennifer, Goldberg Debra S, Zhang Lan V, Wong Sharyl L, Franklin Giovanni, Li Siming, Albala Joanna S, Lim Janghoo, Fraughton Carlene, Llamosas Estelle, Cevik Sebiha, Bex Camille, Lamesch Philippe, Sikorski Robert S, Vandenhaute Jean, Zoghbi Huda Y, Smolyar Alex, Bosak Stephanie, Sequerra Reynaldo, Doucette-Stamm Lynn, Cusick Michael E, Hill David E, Roth Frederick P, Vidal Marc (Oct. 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature (England) 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
- ^ McMahon, H T; Missler M, Li C, Südhof T C (Oct. 1995). "Complexins: cytosolic proteins that regulate SNAP receptor function". Cell (UNITED STATES) 83 (1): 111–9. doi:10.1016/0092-8674(95)90239-2. ISSN 0092-8674. PMID 7553862.
- ^ a b Hanson, P I; Otto H, Barton N, Jahn R (Jul. 1995). "The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin". J. Biol. Chem. (UNITED STATES) 270 (28): 16955–61. doi:10.1074/jbc.270.28.16955. ISSN 0021-9258. PMID 7622514.
- ^ Barnard, R J; Morgan A, Burgoyne R D (Nov. 1997). "Stimulation of NSF ATPase Activity by α-SNAP Is Required for SNARE Complex Disassembly and Exocytosis". J. Cell Biol. (UNITED STATES) 139 (4): 875–83. doi:10.1083/jcb.139.4.875. ISSN 0021-9525. PMC 2139964. PMID 9362506. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2139964.
- ^ Rabouille, C; Kondo H, Newman R, Hui N, Freemont P, Warren G (Mar. 1998). "Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro". Cell (UNITED STATES) 92 (5): 603–10. doi:10.1016/S0092-8674(00)81128-9. ISSN 0092-8674. PMID 9506515.
Further reading
- Wilson DW, Whiteheart SW, Wiedmann M et al. (1992). "A multisubunit particle implicated in membrane fusion". J. Cell Biol. 117 (3): 531–8. doi:10.1083/jcb.117.3.531. PMC 2289450. PMID 1315316. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2289450.
- Whiteheart SW, Brunner M, Wilson DW et al. (1992). "Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) bind to a multi-SNAP receptor complex in Golgi membranes". J. Biol. Chem. 267 (17): 12239–43. PMID 1601890.
- Hanson PI, Otto H, Barton N, Jahn R (1995). "The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin". J. Biol. Chem. 270 (28): 16955–61. doi:10.1074/jbc.270.28.16955. PMID 7622514.
- Whiteheart SW, Griff IC, Brunner M et al. (1993). "SNAP family of NSF attachment proteins includes a brain-specific isoform". Nature 362 (6418): 353–5. doi:10.1038/362353a0. PMID 8455721.
- Timmers KI, Clark AE, Omatsu-Kanbe M et al. (1997). "Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein". Biochem. J. 320 ( Pt 2) (Pt 2): 429–36. PMC 1217948. PMID 8973549. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1217948.
- Lemons PP, Chen D, Bernstein AM et al. (1997). "Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery". Blood 90 (4): 1490–500. PMID 9269766.
- Subramaniam VN, Loh E, Hong W (1997). "N-Ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment proteins (SNAP) mediate dissociation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE) complex". J. Biol. Chem. 272 (41): 25441–4. doi:10.1074/jbc.272.41.25441. PMID 9325254.
- Lowe SL, Peter F, Subramaniam VN et al. (1997). "A SNARE involved in protein transport through the Golgi apparatus". Nature 389 (6653): 881–4. doi:10.1038/39923. PMID 9349823.
- Barnard RJ, Morgan A, Burgoyne RD (1997). "Stimulation of NSF ATPase Activity by α-SNAP Is Required for SNARE Complex Disassembly and Exocytosis". J. Cell Biol. 139 (4): 875–83. doi:10.1083/jcb.139.4.875. PMC 2139964. PMID 9362506. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2139964.
- Wong SH, Xu Y, Zhang T, Hong W (1998). "Syntaxin 7, a novel syntaxin member associated with the early endosomal compartment". J. Biol. Chem. 273 (1): 375–80. doi:10.1074/jbc.273.1.375. PMID 9417091.
- Tang BL, Tan AE, Lim LK et al. (1998). "Syntaxin 12, a member of the syntaxin family localized to the endosome". J. Biol. Chem. 273 (12): 6944–50. doi:10.1074/jbc.273.12.6944. PMID 9507000.
- Wong SH, Zhang T, Xu Y et al. (1998). "Endobrevin, a Novel Synaptobrevin/VAMP-Like Protein Preferentially Associated with the Early Endosome". Mol. Biol. Cell 9 (6): 1549–63. PMC 25382. PMID 9614193. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=25382.
- Osten P, Srivastava S, Inman GJ et al. (1998). "The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs". Neuron 21 (1): 99–110. doi:10.1016/S0896-6273(00)80518-8. PMID 9697855.
- Prekeris R, Klumperman J, Chen YA, Scheller RH (1998). "Syntaxin 13 Mediates Cycling of Plasma Membrane Proteins via Tubulovesicular Recycling Endosomes". J. Cell Biol. 143 (4): 957–71. doi:10.1083/jcb.143.4.957. PMC 2132958. PMID 9817754. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2132958.
- Nagamatsu S, Watanabe T, Nakamichi Y et al. (1999). "alpha-soluble N-ethylmaleimide-sensitive factor attachment protein is expressed in pancreatic beta cells and functions in insulin but not gamma-aminobutyric acid secretion". J. Biol. Chem. 274 (12): 8053–60. doi:10.1074/jbc.274.12.8053. PMID 10075705.
- Subramaniam VN, Loh E, Horstmann H et al. (2000). "Preferential association of syntaxin 8 with the early endosome". J. Cell. Sci. 113 ( Pt 6): 997–1008. PMID 10683148.
- Strausberg RL, Feingold EA, Grouse LH et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139241.
- Hirose H, Arasaki K, Dohmae N et al. (2005). "Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi". EMBO J. 23 (6): 1267–78. doi:10.1038/sj.emboj.7600135. PMC 381410. PMID 15029241. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=381410.
- Singh BB, Lockwich TP, Bandyopadhyay BC et al. (2004). "VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx". Mol. Cell 15 (4): 635–46. doi:10.1016/j.molcel.2004.07.010. PMID 15327778.
- Gerhard DS, Wagner L, Feingold EA et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=528928.